skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vandervelde, Thomas E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Osiński, Marek; Arakawa, Yasuhiko; Witzigmann, Bernd (Ed.)
  2. Digonnet, Michel J; Jiang, Shibin (Ed.)
  3. ABSTRACT Despite the improvements seen in efficiency of GaAs cells over the years, there remains room for improvement for it to approach the theoretical single junction limit posited by Shockley and Quiesser decades ago. One of the more pursued options is the growth of quantum wells within the structure of GaAs to enhance its photon absorption below its bandgap. Multiple Quantum Wells (MQW) have been an ongoing topic of research and discussion for the scientific community with structures like InGaAs/GaAs and InGaP/GaAs quantum wells producing promising results that could potentially improve overall energy conversion. Here, we used WEIN2K, a commercial density functional theory package, to study the ternary compound Ga 1-x Tl x As and determine its electronic properties. Using these results combined with experimental confirmation we extend these properties to simulate its application to form a MQW GaAs/ Ga 1-x Tl x As solar cell. Ga 1-x Tl x As is a tunable ternary compound, with its bandgap being strongly dependent on the concentration of Tl present. Concentrations of Tl as low as 7% can reduce the bandgap of Ga 1-x Tl x As to roughly 1.30 eV from GaAs’s 1.45 eV at room temperature with as little as a 1.7% increase in lattice constant. The change in bandgap, accompanied by the relatively small change in lattice constant makes Ga 1-x Tl x As a strong candidate for a MQW cell with little to no strain balancing required within the structure to minimize unwanted defects that impede charge collection within the device. Our GaAs photodiode with TlGaAs MQWs shows an expanded absorption band and improved conversion efficiency over the standard GaAs photovoltaic cell with dilute concentrations of Tl incorporated into the compound. 
    more » « less
  4. ABSTRACT The vast majority of power generation in the United States today is produced through the same processes as it was in the late-1800s: heat is applied to water to generate steam, which turns a turbine, which turns a generator, generating electrical power. Researchers today are developing solid-state power generation processes that are more befitting the 21 st -century. Thermophotovoltaic (TPV) cells directly convert radiated thermal energy into electrical power, through a process similar to how traditional photovoltaics work. These TPV generators, however, include additional system components that solar cells do not incorporate. These components, selective-emitters and filters, shape the way the radiated heat is transferred into the TPV cell for conversion and are critical for its efficiency. Here, we present a review of work performed to improve the components in these systems. These improvements will help enable TPV generators to be used with nearly any thermal source for both primary power generation and waste heat harvesting. 
    more » « less
  5. ABSTRACT With the rising interest in oceanic monitoring, climate awareness and surveillance, the scientific community need for developing autonomous, self-sustaining Unmanned Underwater Vehicles (UUVs) increased as well. Limitations on the size, maneuverability, power consumption, and available on-site maintenance of these UUVs make a number of proposed technologies to power them harder to implement than others; solar energy harvesting stands as one of the more promising candidates to address the need for a long-term energy supply for UUVs due to its relatively small size and ease of deployment. Studies show research groups focusing on the use of Si cells (amorphous and crystalline), InGaP, and more recently Organic Photovoltaics to convert the attenuated solar spectrum under shallow depths (no deeper than 9.1 m) into electrical energy used or stored by the UUV’s power management system (P. P. Jenkins et al. 2014; Walters et al. 2015). In our study, we consider the ternary compound In 1-x Tl x P that allows for varying the quantum efficiency of the cell, and by extension the overall harvesting efficiency of the system by altering the Tl content (x) in the compound. In 1-x Tl x P on InP is a low strain system since the compound exhibits very little change in its lattice constant with changing Tl content due to the comparable atomic size and forces of In and Tl allowing for relatively easy growth on InP substrates. The study focuses on studying the spectral response and comparing the performance of an optimized single junction In 1-x Tl x P cells to In 1-y Ga y P cells while accounting for the optical losses of the solar irradiance underwater for various depths. 
    more » « less